
Approved for public release. Not confidential 1

Reverse engineering the MINI
Cooper automotive CAN bus
message format.

Software study group presentation
February 2011

Approved for public release. Not confidential 2

> Everyone has heard that modern cars use the CAN bus
to send messages between various parts of the vehicle.

> Those messages must be interesting or the
manufacturer wouldn’t build an entire bus to transport
them right?

> Wouldn’t you like to know what the various bits of your
car are saying to each other?

Why spend time reverse engineering a CAN bus?

Approved for public release. Not confidential 3

> CAN is a message based protocol, designed specifically
for automotive applications but now also used in other
areas such as industrial automation and medical
equipment.

> Development of the CAN-bus started originally in 1983 at
Robert Bosch GmbH. The protocol was officially
released by the SAE in 1986. The first CAN controller
chips, produced by Intel and Philips, came on the market
in 1987. Bosch published the CAN 2.0 specification in
1991.

Controller Area Network bus overview.
(Copied from Wikipedia)

Approved for public release. Not confidential 4

> ISO 11898-1: CAN Data Link Layer and Physical
Signaling. (Costs $, so I didn’t read it.)

> Microchip AN228: A CAN Physical Layer Discussion
+ 2-wire differential signaling. NICE!

> Lots of CAN-to-USB converters out there. I borrowed
one from a local FAE and wired it to the MINI

> A single CAN bus connects the Instrument cluster,
Engine Control Module, Automatic Transmission Module,
Antilock Braking System, Automatic Stability Control,
Electro Hydraulic Steering and the Steering Angle
Sensor together. (What could possibly go wrong!)

So… CAN I get access to the data somehow?

Approved for public release. Not confidential 5

> Since the CAN bus is differential, looking at one wire
with respect to ground looks approximately like this:
&@!#^(@&^$#(*&(!*^@%$(!^%@#%!&@^%#(&!^

> Trying to hook two oscilloscope probes up, inverting one
signal and adding them while balancing a scope on your
lap without accidentally unplugging it from the extension
cord, dropping it on the garage floor or shorting out the
CAN bus didn’t help much.

> How about the “I’ll know the data is right when I see it”
method: Pick rates until it looks right. This is pretty easy.
There are only a few well-known possibilities.

Problem #1 data transmission rate?

Approved for public release. Not confidential 6

> The protocol adapter does all the hard work. You get
nice messages out of it once you pick the right bit rate.

> CAN messages are well-defined:
+ I got a timestamp, Message ID and message bytes.
+ All messages had 8 data bytes.

327a 0153 00 51 00 00 00 ff 00 80

327a 01f0 0a 20 0a 00 0a 00 0a 00

327a 01f8 00 00 00 00 fe ff 00 00

327c 0316 01 00 00 00 00 00 00 00

327c 0336 00 00 fe 02 82 15 b0 67

What do you get?

Approved for public release. Not confidential 7

> 327a 0153 00 51 00 00 00 ff 00 80

Timestamp: 327a

Message ID: 0153

8 bytes of data: 00 51 00 00 00 ff 00 80

The parts of a message:

Approved for public release. Not confidential 8

Count Message ID
158865 0x0153

158865 0x01f0

158865 0x01f8

216338 0x0316

216334 0x0329

216335 0x0336

124942 0x0545

5432 0x0613

5432 0x0615

5432 0x0618

6010 0x061a

2209 0x061f

556 0x0630

I recorded 1.2 messages while I drove around.
There were 13 different massage IDs

Approved for public release. Not confidential 9

> The number of messages received and the message IDs
are inversely-related! What? I got more messages with
low numbered IDs than I got messages of high
numbered IDs.

> Using Google, I found this: "A message consists
primarily of an ID which represents the priority of the
message and up to eight data bytes."

> That would explain it. Lower message IDs are higher
priority and occur more often.

> (Don’t look too closely at the table and complain that
some of the counts and message IDs don't fall nicely into
the description above. Real life is messy.)

Things to notice:

Approved for public release. Not confidential 10

> How about message ID 0x0153 since it’s the highest
priority message encountered.

> grep " 0153" log1_clean | head
327a 0153 00 51 00 00 00 ff 00 80
3281 0153 00 51 00 00 00 ff 00 80
3288 0153 00 51 00 00 00 ff 00 80
328f 0153 00 51 00 00 00 ff 00 80
3296 0153 00 51 00 00 00 ff 00 80
329d 0153 00 51 00 00 00 ff 00 80
32a4 0153 00 51 00 00 00 ff 00 80
BORING!!!!!

What to look at first?

Approved for public release. Not confidential 11

> grep " 0153" log1_clean | cut -d' ' -f2- | sort | uniq | head
0153 00 01 01 00 00 ff 00 80
0153 00 01 02 00 00 ff 00 80
0153 00 01 03 00 00 ff 00 80
0153 00 01 04 00 00 ff 00 80
0153 00 01 05 00 00 ff 00 80
0153 00 01 06 00 00 ff 00 80
0153 00 01 07 00 00 ff 00 80

> That looks more interesting.
> There’s data in byte #1 at least. Let’s look there.

Let's toss the timestamp, sort the data, remove all
the duplicates and see if there's something more
interesting going on.

Approved for public release. Not confidential 12

Byte #1 data: Looks like something’s there.

0

50

100

150

200

250

300

1
28

4
56

7
85

0
11

33
14

16
16

99
19

82
22

65
25

48
28

31
31

14
33

97
36

80
39

63
42

46
45

29
48

12
50

95
53

78
56

61
59

44
62

27
65

10
67

93
70

76
73

59
76

42
79

25
82

08
84

91
87

74
90

57
93

40
96

23
99

06
10

18
9

10
47

2
10

75
5

11
03

8
11

32
1

11
60

4
11

88
7

12
17

0
12

45
3

12
73

6
13

01
9

Byte1

Byte2

Approved for public release. Not confidential 13

Just look at the first 1,000 messages. Looks better!

0

50

100

150

200

250

300

1 21 41 61 81 10
1

12
1

14
1

16
1

18
1

20
1

22
1

24
1

26
1

28
1

30
1

32
1

34
1

36
1

38
1

40
1

42
1

44
1

46
1

48
1

50
1

52
1

54
1

56
1

58
1

60
1

62
1

64
1

66
1

68
1

70
1

72
1

74
1

76
1

78
1

80
1

82
1

84
1

86
1

88
1

90
1

92
1

94
1

96
1

98
1

Byte1

Byte2

Approved for public release. Not confidential 14

> The plot looks continuous from 0 through about 153 and
then starts over at zero and looks continuous again for a
while.

> This is the classic pattern for the lower-significance bits
of a larger bit field.

> Imagine looking at a ramp from 0 to 100, but cover up
the most significant digit. You’ll see
0,1,2,3,4,5,6,7,8,9,0,1,2,3,4,5,6,7,8,9,0,1,2,3,4,5,6,7,8,9

> That’s just what we’re seeing, so let’s look for the upper
bits. They are probably in the packet. Byte #2 maybe?

This is a pattern to look out for:

Approved for public release. Not confidential 15

> Some of the data in the packet might be the same for all
packets in the log. How can we tell which bits CHANGE
at least once in the log?

> Thanks to Cooper and Elmquist, this algorithm works:
1) Record the data for the first packet of a type.
2) Exclusive-or the new packet with the saved packet to get

just the bits that are different.
3) OR those bits into an array holding all the bits that have

changed.
At the end, print out the array.

But, not so fast. It would be great to know which
bits change in the packet first.

Approved for public release. Not confidential 16

> 153 10 f8 3f 00 00 00 00 80

> 1f0 ff e7 ff c7 ff 27 ff 87 This ID looks fun.

> 1f8 7f 00 00 00 00 00 00 00 One 7-bit value?
> 316 01 00 ff 7f 00 00 00 00

> 329 f3 7f 00 00 00 ff 00 00

> 336 ff 7f 00 02 ff 1f ff 7f

> 545 12 ff ff 00 00 00 00 00

> 613 00 00 00 00 00 df f7 00

> 615 00 00 00 03 02 00 00 00 Only 3 bits change!

> 618 00 00 3f 00 00 00 00 00 Just one 6-bit field?
> 61a 07 00 00 ff 00 ff 00 00

> 61f ff ff 0f c0 42 00 00 00

> 630 00 00 00 00 00 00 00 00 This ID is real boring.

Which bits changed in which packets:

Approved for public release. Not confidential 17

> We plotted byte #1 and got this: (Let’s look closer at it.)

Back to the packet ID 0x0153

0

50

100

150

200

250

300

1 22 43 64 85 10
6

12
7

14
8

16
9

19
0

21
1

23
2

25
3

27
4

29
5

31
6

33
7

35
8

37
9

40
0

42
1

44
2

46
3

48
4

50
5

52
6

54
7

56
8

58
9

61
0

63
1

65
2

67
3

69
4

71
5

73
6

75
7

77
8

79
9

82
0

84
1

86
2

88
3

90
4

92
5

94
6

96
7

98
8

Byte1

Byte2

Approved for public release. Not confidential 18

> Why do I see a 0x51 (D’81)in there? The 1 bit never
changes since we see a change mask of 0xF8

> It looks like the least-significant bits don’t change.
> Looking at the beginning and removing dups we see this:

+ 81

+ 89

+ 97

+ 113

+ 121

> HEY! They go up by 8 each time. (16 if you do the math)
> The least-significant 8 bits probably don’t matter. >>3

But byte #1 has bits-changed of 0xF8.

Approved for public release. Not confidential 19

Now the data goes up and down by 1 (with a bias)

0

5

10

15

20

25

30

35

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 10
6

11
3

12
0

12
7

13
4

14
1

14
8

15
5

16
2

16
9

17
6

18
3

19
0

19
7

20
4

21
1

21
8

22
5

23
2

23
9

24
6

25
3

26
0

26
7

27
4

28
1

28
8

29
5

30
2

30
9

31
6

32
3

Series1

Approved for public release. Not confidential 20

So where are the more significant bits? Next byte?

0
50

100
150
200
250
300

1 21 41 61 81 10
1

12
1

14
1

16
1

18
1

20
1

22
1

24
1

26
1

28
1

30
1

32
1

34
1

36
1

38
1

40
1

42
1

44
1

46
1

48
1

50
1

52
1

54
1

56
1

58
1

60
1

62
1

64
1

66
1

68
1

70
1

72
1

74
1

76
1

78
1

80
1

82
1

84
1

86
1

88
1

90
1

92
1

94
1

96
1

98
1

Byte1

Byte2

0
1
1
2
2
3
3
4
4

1 21 41 61 81 10
1

12
1

14
1

16
1

18
1

20
1

22
1

24
1

26
1

28
1

30
1

32
1

34
1

36
1

38
1

40
1

42
1

44
1

46
1

48
1

50
1

52
1

54
1

56
1

58
1

60
1

62
1

64
1

66
1

68
1

70
1

72
1

74
1

76
1

78
1

80
1

82
1

84
1

86
1

88
1

90
1

92
1

94
1

96
1

98
1

Byte2

Byte3

Approved for public release. Not confidential 21

> Every time byte #1 has a discontinuity, byte #2
increments or decrements.

> This is EXACTLY what we want to see if a bit field is split
into two parts. All we need to do is glue them together.

> Take byte #2 shift it left 8 bits (multiply by 256) and add it
to byte #1.

> Then shift the whole mess right 3 bits (divide by 8)
> Then subtract 10.
> Simple right? What do you get then?

See how byte #2 goes up or down?

Approved for public release. Not confidential 22

Final graph of who-knows? Looks fabulous!

0

20

40

60

80

100

120

1 23 45 67 89 11
1

13
3

15
5

17
7

19
9

22
1

24
3

26
5

28
7

30
9

33
1

35
3

37
5

39
7

41
9

44
1

46
3

48
5

50
7

52
9

55
1

57
3

59
5

61
7

63
9

66
1

68
3

70
5

72
7

74
9

77
1

79
3

81
5

83
7

85
9

88
1

90
3

92
5

94
7

96
9

99
1

BiasRemoved

BiasRemoved

Approved for public release. Not confidential 23

Longer plot of whatever it is.

0

100

200

300

400

500

600

700

800

900

1
29

7
59

3
88

9
11

85
14

81
17

77
20

73
23

69
26

65
29

61
32

57
35

53
38

49
41

45
44

41
47

37
50

33
53

29
56

25
59

21
62

17
65

13
68

09
71

05
74

01
76

97
79

93
82

89
85

85
88

81
91

77
94

73
97

69
10

06
5

10
36

1
10

65
7

10
95

3
11

24
9

11
54

5
11

84
1

12
13

7
12

43
3

12
72

9
13

02
5

BiasRemoved

BiasRemoved

Approved for public release. Not confidential 24

> I wrote down what I did:
> 1) Back down driveway
> 2) Stop
> 3) Drive through neighborhood
> This could be vehicle speed! (Maybe)
> In what units? MPH, KPH, furlongs-per-fortnight?
> MPH? (probably not since I don’t drive 600 MPH.)
> Somewhere along the line I decided I needed to divide

by 22 to get MPH. That seems dubious, but I don’t have
records of the drive anymore, so OK, let’s go with that.

What is it?

Approved for public release. Not confidential 25

Longer Speed plot. (Captured from older dataset)

-10

0

10

20

30

40

50

60

0 50000 100000 150000 200000 250000

MPH

MPH

Approved for public release. Not confidential 26

> Byte #0 has changing data in the 2^4 bit (0x10)
> Byte #7 has changing data in the 2^7 bit. (0x80)
> (Looking at byte #7 it’s 0x80 until I turn the car off, so it’s

not very interesting.)
> Plot byte #0 on top of the speed:

OK, we nailed that one. What are the other bits?

Approved for public release. Not confidential 27

Speed and Byte #0

-10

0

10

20

30

40

50

60

70

0 50000 100000 150000 200000 250000

MPH

B0(Scaled)

Approved for public release. Not confidential 28

> It looks like Byte #0 bit 2^4 goes to a 1 whenever I’m
decelerating.

> I know from looking at OBD data that that happens when
the fuel system goes “open-loop” This could be an
indication of that condition. It would be easy to correlate
it with a live OBD reading to make sure.

That’s interesting.

Approved for public release. Not confidential 29

> I found these values over the course of about 2 weeks of
investigating:

OK, now just do the same thing with all the other
message types…

Approved for public release. Not confidential 30

Message type 0x153

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7
Bits
used

10 F8 3F 00 00 00 00 80

For
What?

00 or
10
(Fuel
open-
loop?)

Vehicle or wheel
speed

80
when
car is
on?

Approved for public release. Not confidential 31

Message type 0x1F0

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7
Bits
used

FF E7 FF C7 FF 27 FF 87

For
What?

8 bits +
next 3
bits
Wheel
speed

00, 20,
40, 60
pattern
+ 3 bits
of
wheel
speed

8 bits +
next 3
bits
Wheel
speed

00, 20,
40, 60
pattern
+ 3 bits
of
wheel
speed

8 bits +
next 3
bits
Wheel
speed

00, 20,
40, 60
pattern
+ 3 bits
of
wheel
speed

8 bits +
next 3
bits
Wheel
speed

00, 20,
40, 60
pattern
+ 3 bits
of
wheel
speed

Approved for public release. Not confidential 32

Message type 0x1F8

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7
Bits
used

7F 00 00 00 00 00 00 00

For
What?

Correla
ted to
Wheel
speed

Approved for public release. Not confidential 33

Message type 0x316

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7
Bits
used

01 00 FF 7F 00 00 00 00

For
What?

Ignition
on

RPM * 6
(LSBFirst)

Approved for public release. Not confidential 34

Message type 0x329

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7
Bits
used

F3 7F 00 00 00 FF 00 00

For
What?

11, 62,
80, C0
pattern

Coolant
Temp *
4 in C

Throttle
position

Approved for public release. Not confidential 35

Message type 0x336

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7
Bits
used

FF 7F 00 02 FF 1F FF 7F

For
What?

Correlated with
RPM. Ignition
advance?

Ignition
on?

? ? ? ?

Approved for public release. Not confidential 36

Message type 0x545

Byte 0 Byte
1

Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

Bits
used

12 FF FF 00 00 00 00 00

For
What?

12 when
not
running.
Parking
Brake?

Fuel
consumed?

Approved for public release. Not confidential 37

Message type 0x613

Byte 0 Byte
1

Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

Bits
used

00 00 00 00 00 DF F7 00

For
What?

? ?

Approved for public release. Not confidential 38

Message type 0x615

Byte 0 Byte
1

Byte 2 Byte 3 Byte 4 Byte
5

Byte 6 Byte 7

Bits
used

00 00 00 03 02 00 00 00

For
What?

? Ignition
on?

Approved for public release. Not confidential 39

Message type 0x618

Byte 0 Byte
1

Byte 2 Byte 3 Byte 4 Byte
5

Byte 6 Byte 7

Bits
used

00 00 3F 00 00 00 00 00

For
What?

?

Approved for public release. Not confidential 40

Message type 0x61A

Byte 0 Byte
1

Byte 2 Byte 3 Byte 4 Byte
5

Byte 6 Byte 7

Bits
used

07 00 00 FF 00 FF 00 00

For
What?

? Odo? ?

Approved for public release. Not confidential 41

Message type 0x61F

Byte 0 Byte
1

Byte 2 Byte 3 Byte 4 Byte
5

Byte 6 Byte 7

Bits
used

FF FF 0F C0 42 00 00 00

For
What?

? ? ? ? Bit 2
blinker

Approved for public release. Not confidential 42

Message type 0x630

Byte 0 Byte
1

Byte 2 Byte 3 Byte 4 Byte
5

Byte 6 Byte 7

Bits
used

00 00 00 00 00 00 00 00

For
What?

Approved for public release. Not confidential 43

I even managed to figure out which wheel sensor
was which. How?

Approved for public release. Not confidential 44

> See that there are two lines that are almost identical? I’d
say that’s probably a front wheel and a rear wheel.

> I turned right, left then straight. Which side is left?
+ As you turn right, the right wheels travel less distance, so they’ll

go slower.

> OK, we have right vs. left figured out. Front vs. back?
> See the sharp spikes? Could that be sticks or cracks in

the road which will make the wheel speed change?
> There are places where a spike happens in one line and

then happens later in the other line. That looks like front
vs. rear to me.

Which wheel is which?

Approved for public release. Not confidential 45

> This project was great fun.
> I suggest you try it with some random data stream

someday.

That’s it.

	Reverse engineering the MINI Cooper automotive CAN bus message format.
	Why spend time reverse engineering a CAN bus?
	Controller Area Network bus overview. �(Copied from Wikipedia)
	So… CAN I get access to the data somehow?
	Problem #1 data transmission rate?
	What do you get?
	The parts of a message:
	I recorded 1.2 messages while I drove around. There were 13 different massage IDs
	Things to notice:
	What to look at first?
	Let's toss the timestamp, sort the data, remove all the duplicates and see if there's something more interesting going on. �
	Byte #1 data: Looks like something’s there.
	Just look at the first 1,000 messages. Looks better!
	This is a pattern to look out for:
	But, not so fast. It would be great to know which bits change in the packet first.
	Which bits changed in which packets:
	Back to the packet ID 0x0153
	But byte #1 has bits-changed of 0xF8.
	Now the data goes up and down by 1 (with a bias)
	So where are the more significant bits? Next byte?
	See how byte #2 goes up or down?
	Final graph of who-knows? Looks fabulous!
	Longer plot of whatever it is.
	What is it?
	Longer Speed plot. (Captured from older dataset)
	OK, we nailed that one. What are the other bits?
	Speed and Byte #0
	That’s interesting.
	OK, now just do the same thing with all the other message types…
	Message type 0x153
	Message type 0x1F0
	Message type 0x1F8
	Message type 0x316
	Message type 0x329
	Message type 0x336
	Message type 0x545
	Message type 0x613
	Message type 0x615
	Message type 0x618
	Message type 0x61A
	Message type 0x61F
	Message type 0x630
	I even managed to figure out which wheel sensor was which. How?
	Which wheel is which?
	That’s it.

